

Actuary vs Artificial Intelligence

Technology Advisory

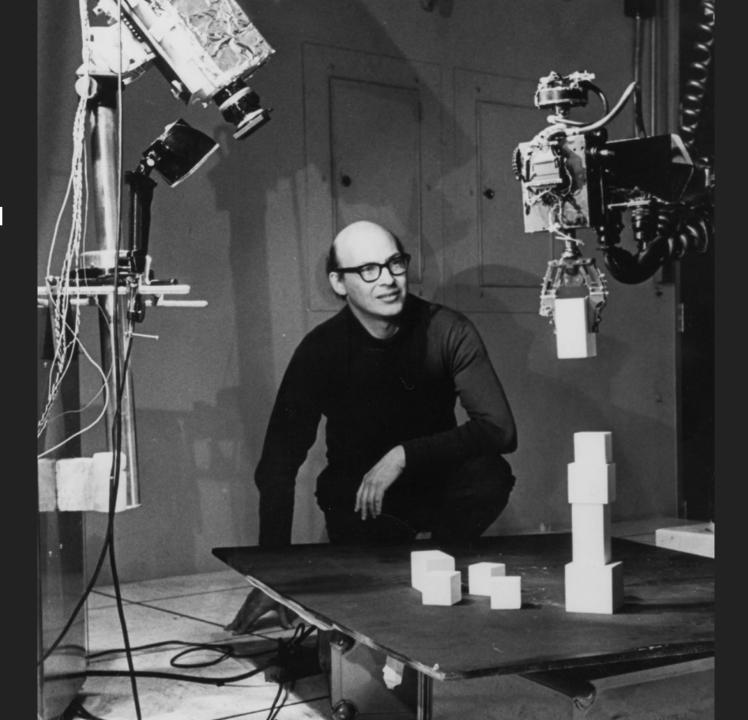
August 24th 2018

Actuary & Al

Models and applications

Q&A

EARLY COMPUTER VISION & PERCEPTION SYSTEM



ONE OF THE FIRST SELF DRIVING ROBOTS

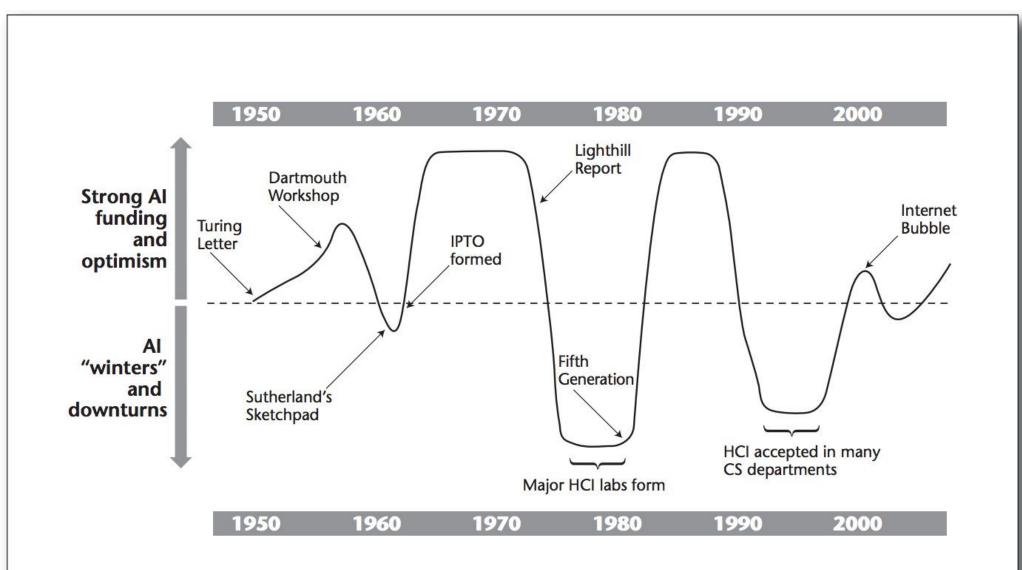
EARLY NATURAL LANGUAGE PROCESSING LAB

"The spirit is willing, but the flesh is weak. "

after English - Russian - English

"The whisky is strong, but the meat is rotten."

Will it be THE NEXT BIG THING?



3 exponential laws

Moore's law

predicts the exponential increase of processing power of computers

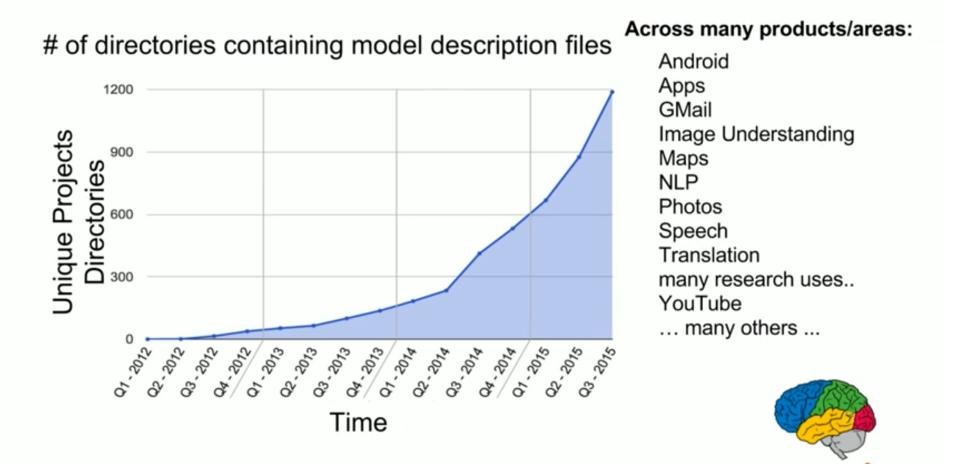
Metcalfe's law

talks about how the value of a network increases proportionally to the number of connected users to the system

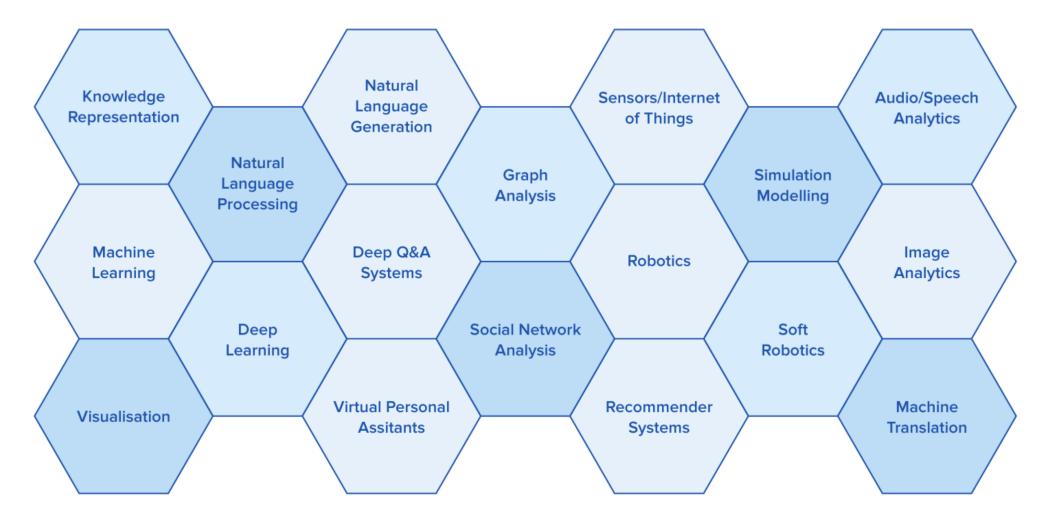
Kryder's law

looks into storage expansion

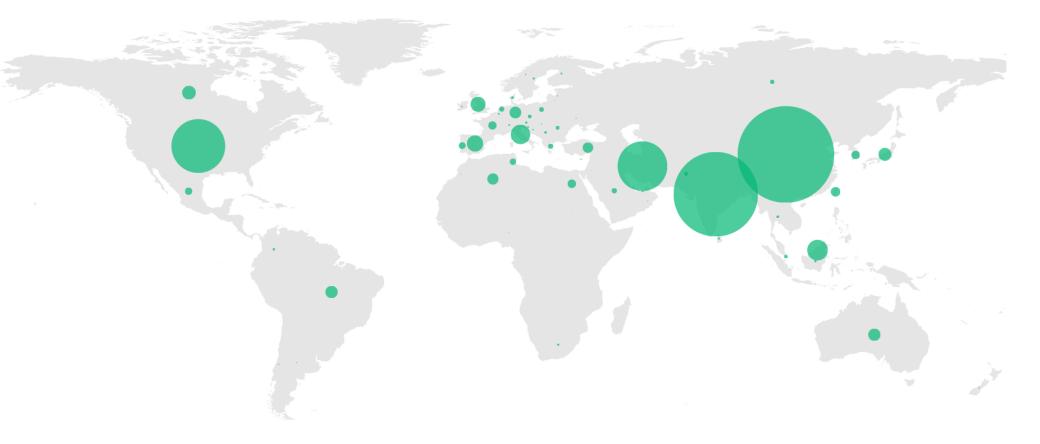
Growing Use of Deep Learning at Google



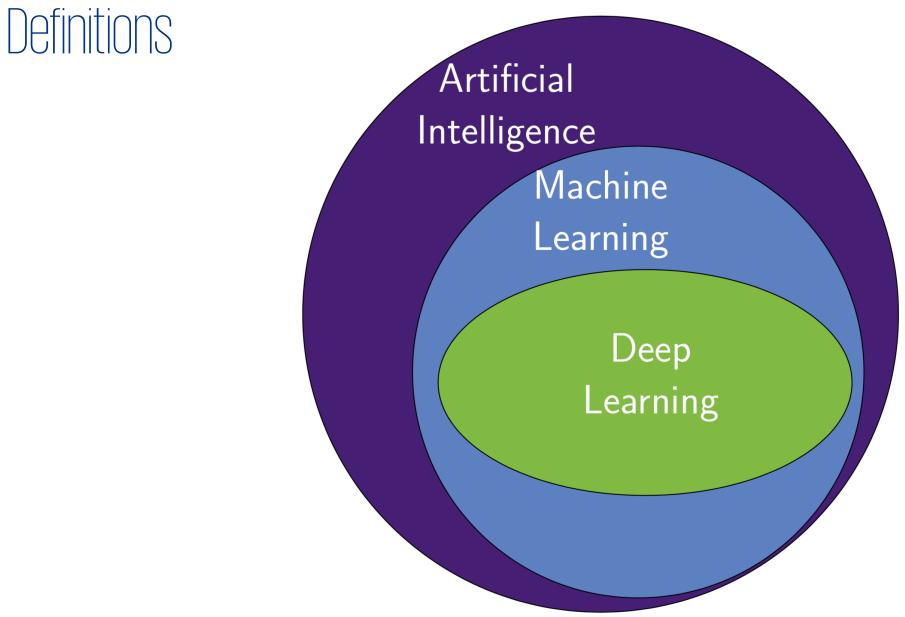
Al development topics

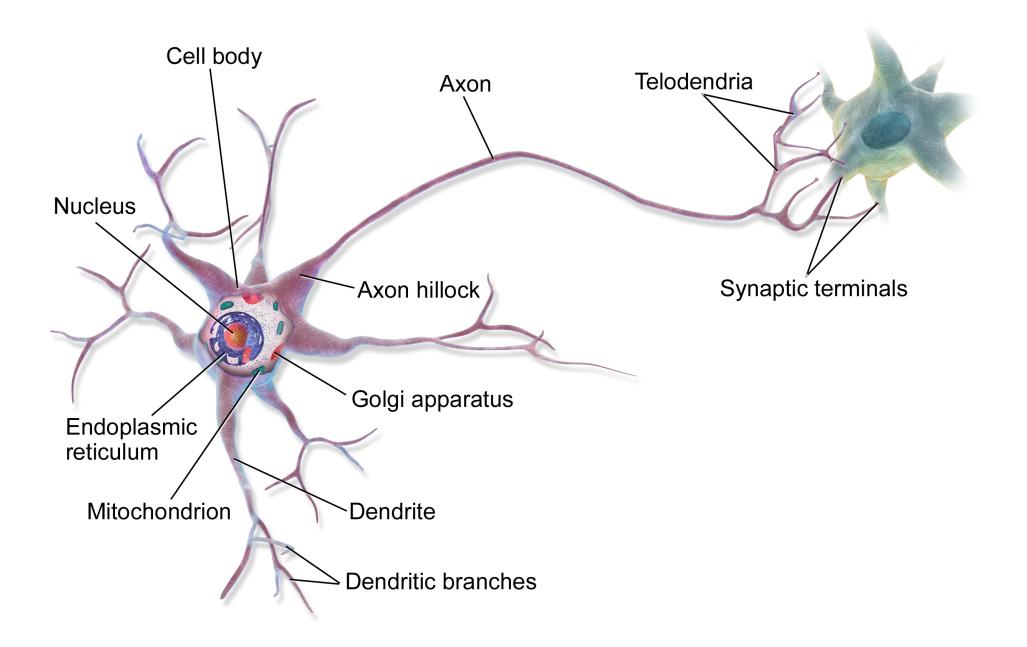


Countries by activity in Al research

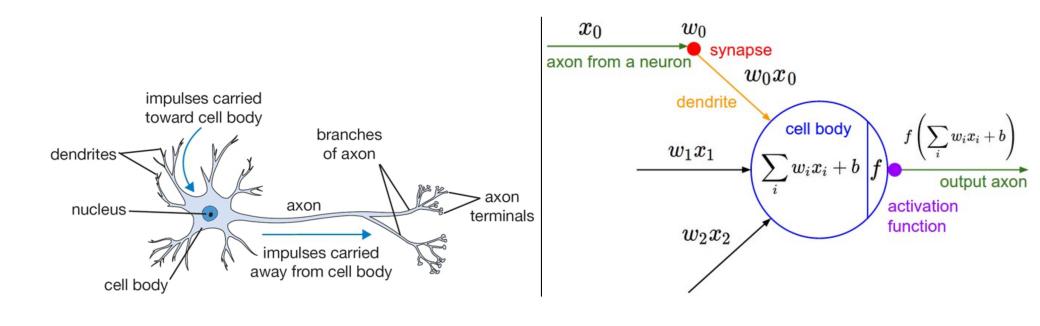


O2 Models and applications



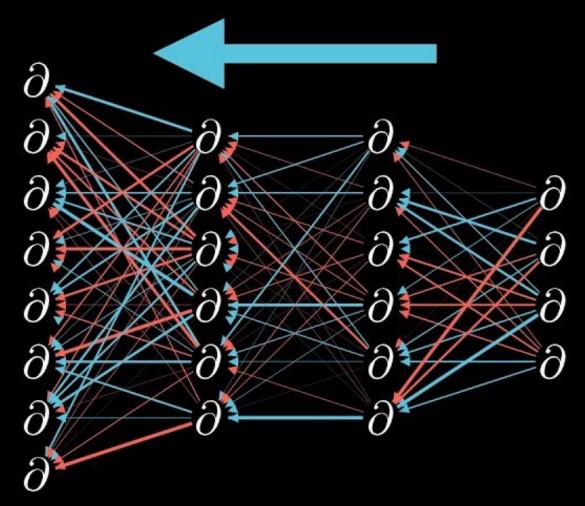


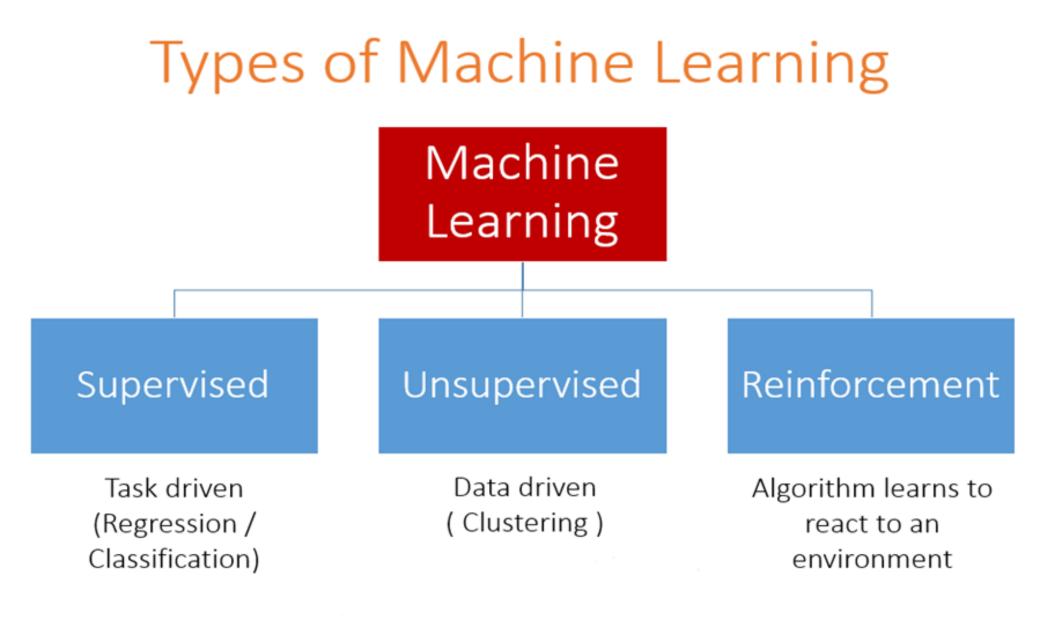
bio / ML neuron



1 + 6 = 7 $1 \ 6 = 7$ 3 * 13 = 39 $3 \ 13 = 39$ 9 / 9 = 1 $9 \ 9 = 1$

Backpropagation calculus





ML algorithms

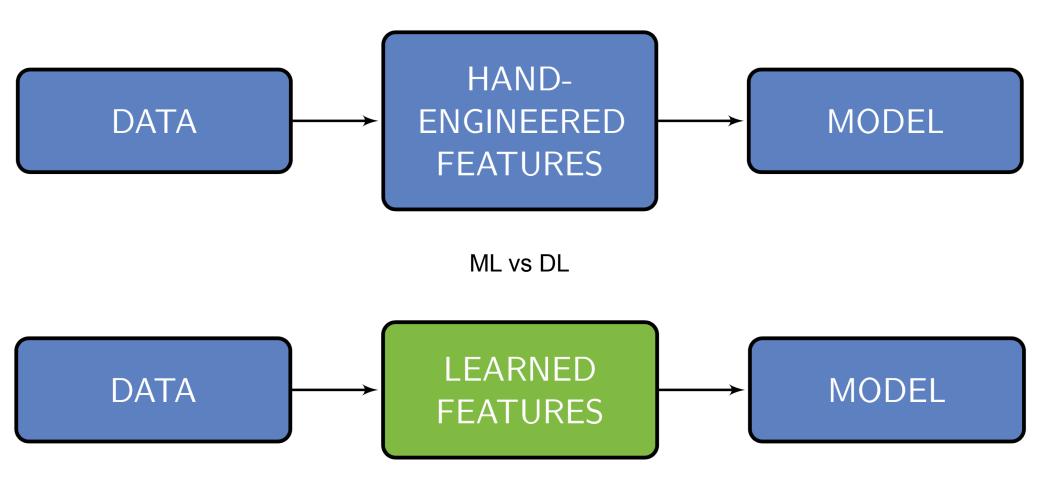
Supervised learning

- Decision trees;
- Random forests;
- Gradient boosted machines;
- Generalised linear models;
- Support vector machines;
- K-nearest neighbour;
- Neural networks.

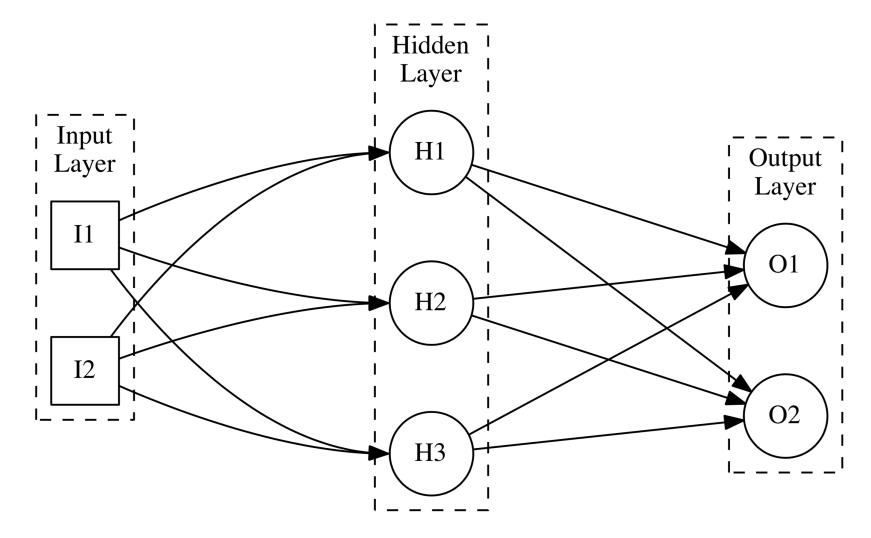
Unsupervised learning

- K-means clustering;
- K-nearest neighbour;
- Hierarchical clustering;
- Principal component analysis;
- Support vector machines;
- Neural networks.

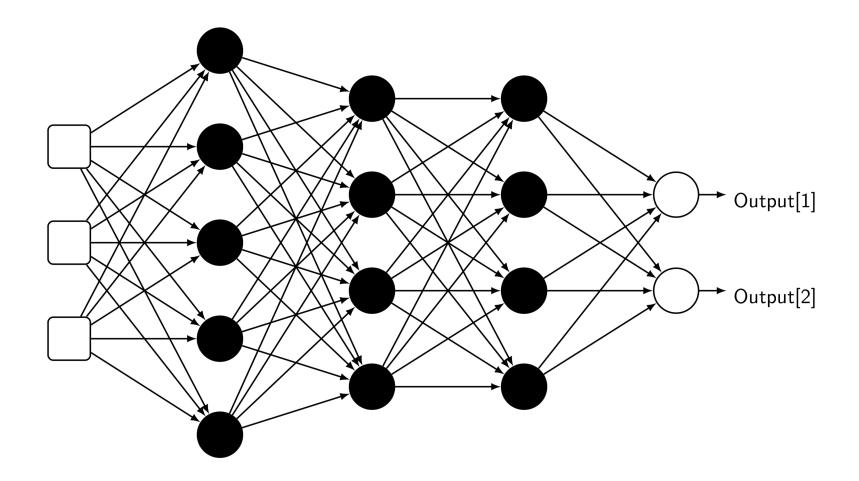
ML vs Deep Learning

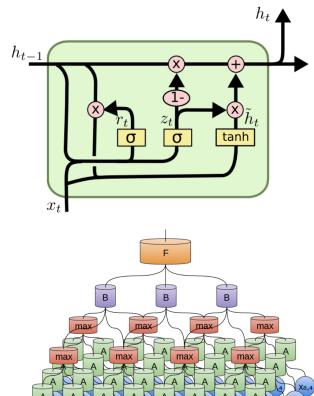


Neural Network



Deep Neural Network





0.10

a₀ 0.20

0.05

0.95

0.40

*/*0.30

0.30

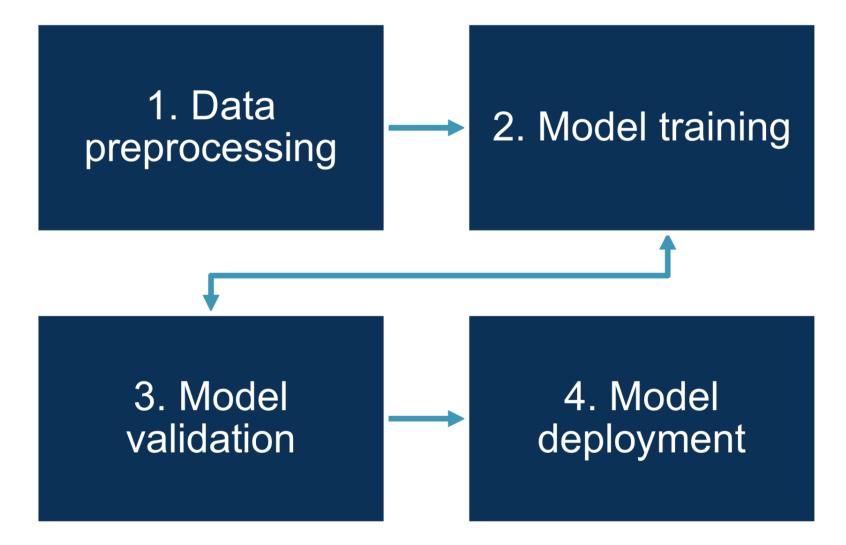
0.70

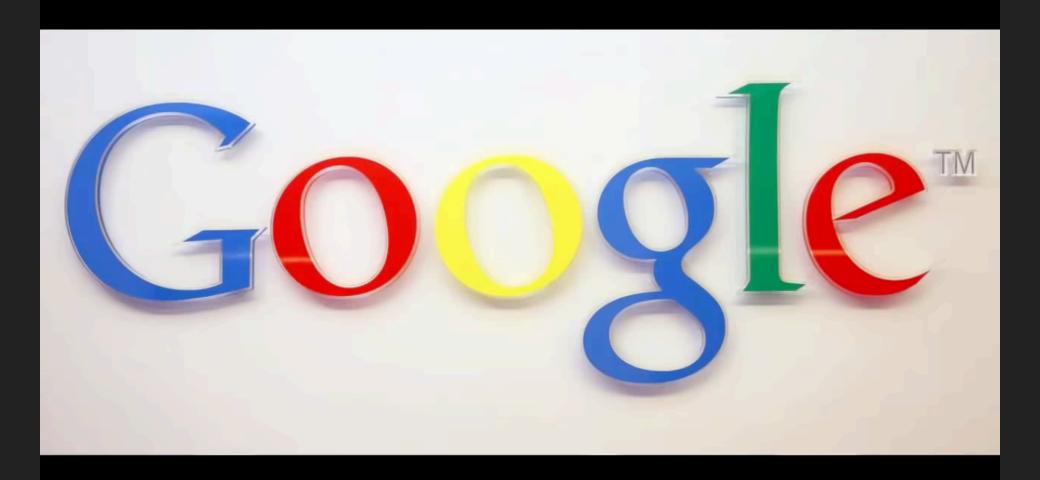
a1 1.0

0.4

0.5

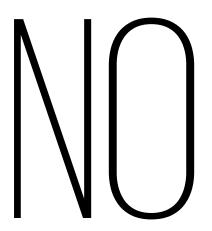
Convolutional Neural Network (CNN)

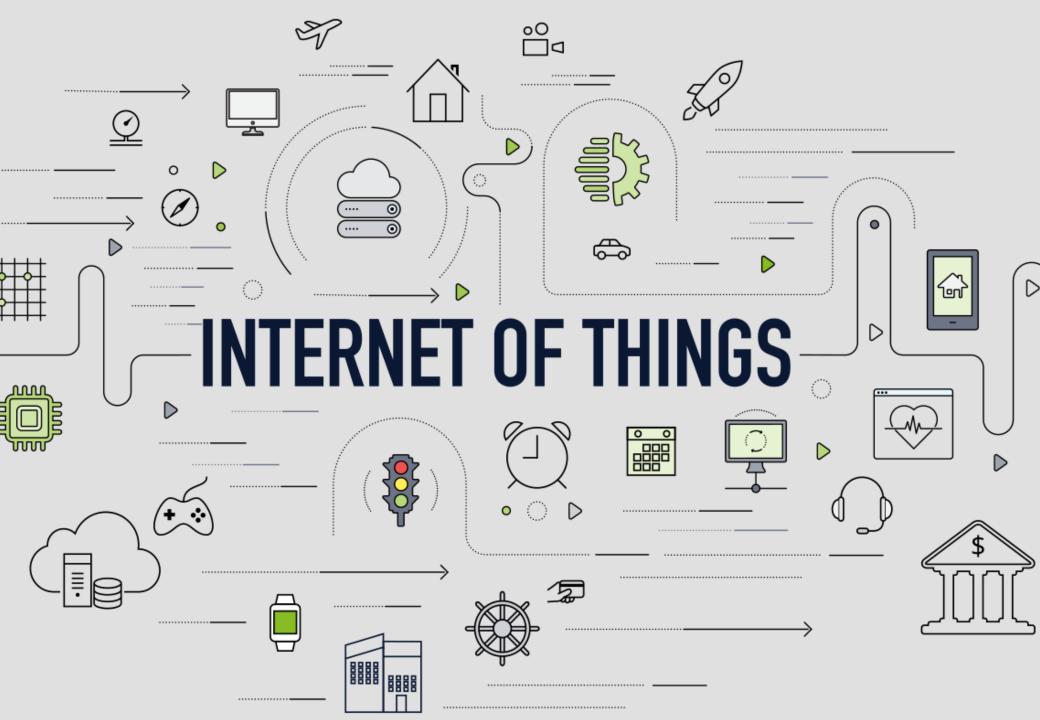




CC Actuary & Al

Will Al make actuary profession obsolete?





Why AI/ML should matter to you?

Improved Data Quality

Opportunity to improve the quality of data which businesses are using.

As competitors start utilising better data, businesses not attempting to do the same may become left behind.

Higher quality data will produce better models regardless of the techniques being employed.

New Data Sources

ML potentially opens up opportunities to explore alternative data sources, i.e., text fields could be explored to understand key themes and images could potentially be incorporated into predictive models.

Speed of Analysis

Much time taken to produce a model is used to gather, clean and manipulate data. These tasks will largely be similar, regardless of the methods used. Once a modelling data set has been produced, machine learning can be beneficial. Models can generally be fitted and validated in a short space of time, allowing tasks to be completed quickly.

Why AI/ML should matter to you?

New Modelling Techniques

Utilising alternative approaches, such as unsupervised learning, allows different perspectives to be gained on data. Techniques such as anomaly detection or time series modelling can potentially produce a stronger predictive power for certain problems, improving the performance of actuarial models.

New Approaches to Problems

Actuaries typically use relatively standard modelling approaches. However, in all cases, models will suffer from model error and therefore being able to produce a wider variety of models in a short space of time will allow actuaries to better select the appropriate modelling approach for a given problem.

Improved Data Visualisations

With new modelling techniques and new software for machine learning, users have an increasing power to produce stunning visualisations of data which can itself provide new perspectives on a task.

TRADITIONAL ACTUARIAL PRACTICE AREAS	General Insurance	Pensions	Life, Health & Care	Investment
Pricing	\checkmark			
Product Design / Propensity Customer Behaviour	\checkmark		\checkmark	
Reserving	\checkmark			
Capital Modelling	\checkmark		\checkmark	
Exposure Management	\checkmark			
Scheme Valuation		\checkmark		
Surplus Distribution			\checkmark	
Strategic / Tactical Asset Allocation				\checkmark
Asset & Liability Management / Hedging				\checkmark
Claims Management	\checkmark	\checkmark	\checkmark	\checkmark
Data Cleansing (Table 5)	\checkmark	\checkmark	\checkmark	\checkmark
External Data Sources (Table 5)	\checkmark	\checkmark	\checkmark	\checkmark

Actuary or Data Scientist

Data scientists tend to tackle a wide variety of modelling tasks (financial and nonfinancial) and therefore are often more reliant on gaining an understanding of the domain specific elements of a task from other domain specialists.

- The statistical techniques used by actuaries and data scientists often differ;
- The approaches taken to validate assumptions may differ;
- The approaches used for variable selection may differ;
- The approaches used to assess the performance of a model may differ;
- Good data scientists need subject expertise

Despite these differences, what should be clear is that data science and actuarial modelling approaches have much in common. This leaves the actuarial profession well placed to utilise these new techniques within the scope of their existing work.

Domains to explore

General insurance

Pricing	 Supervised Learning: decision tree, forests and penalised regression Unsupervised Learning: using a non-linear approach Deep Learning and high level decision making Experience monitoring with a larger dataset 	
Product Design / Propensity Customer Behaviour	- Big Data on consumer information - Sentiment Analysis using external sources and social media	
Reserving	 Making projections more predictive; claim predicting pattern could vary Explore supervised learning (penalised regression) Experience monitoring with a larger database 	
Capital Modelling	 Network / Graph Modelling - looking at driving dependencies rather than correlation assumptions Strategically flexible, more decision aid based model on environment Portfolio / Reinsurance optimisation – genetic algorithms 	
Exposure Management	Build predictive models based on weather patterns	30

Pensions & Investment

Scheme Valuation	 More granular individual information from alternative data sources e.g. social media More sophisticated longevity model Tailoring investment strategy to individual circumstances
Asset & Liability Management / Hedging	 More granular data for asset/liability modelling Enhanced market risk monitoring
Capital Modelling	 Network / Graph Modelling- looking at driving dependencies rather than correlation assumptions Strategically flexible, more decision aid based model on environment Portfolio / Reinsurance optimisation – genetic algorithms

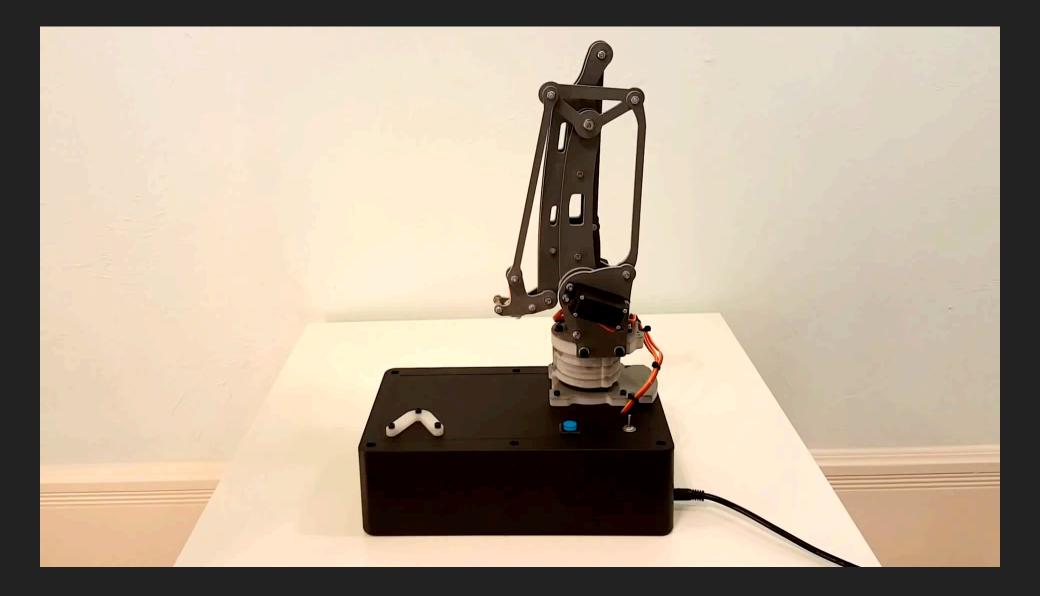
Life, health, care

Pricing	 Supervised Learning: decision tree, forests and penalised regression Unsupervised Learning: using a non-linear approach Deep Learning and high level decision making Experience Monitoring with a larger database
Capital Modelling	 Network / Graph Modelling looking at driving dependencies rather than correlation assumptions Strategically flexible, more decision aid based model on environment Portfolio / Reinsurance optimisation – genetic algorithms
Surplus Distribution	 More granular individual information from social media sites More sophisticated longevity model

All practice areas

	- Reducing errors i.e. data validation
Data Cleansing	- Filling in gaps i.e. missing latitude and longitudes
	- Increasing sample size using Machine Learning extrapolation
	 Web scraping, word search / natural language analysis
External Data Sources	- Quandl / Dun and Brad Street / Bloomberg / social media feeds / credit agencies / telemetry / images / etc.
Feedback Loop / Actuarial Control Cycle	- Year on year to keep track of outputs

can Al hurt us?



Thank you

"KPMG Baltics", UAB, a Lithuanian limited liability company and a member firm of the KPMG network of independent members firms affiliated with KPMG International Cooperative ("KPMG International") a Swiss entity. All rights reserved.

The KPMG name and logo are registered trademarks or trademarks of KPMG International.